Abstract

The modified regularized long wave (MRLW) equation is solved numerically using the finite difference method. Fourier stability analysis of the linearized scheme shows that it is a marginally stable. Also, the local truncation error of the method is investigated. Three invariants of motion are evaluated to determine the conservation properties of the problem, and the numerical scheme leads to accurate and efficient results. Moreover, interaction of two and three solitary waves is shown. The development of the Maxwellian initial condition into solitary waves is also shown and we show that the number of solitons which are generated from the Maxwellian initial condition can be determined. Numerical results show also that a tail of small amplitude appears after the interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.