Abstract
AbstractThe general Degasperis–Procesi equation (gDP) describes the evolution of the water surface in a unidirectional shallow water approximation. We propose a finite‐difference scheme for this equation that preserves some conservation and balance laws. In addition, the stability of the scheme and the convergence of numerical solutions to exact solutions for solitons are proved. Numerical experiments confirm the theoretical conclusions. For essentially nonintegrable versions of the gDP equation, it is shown that solitons and antisolitons collide almost elastically: they retain their shape after interaction, but a small “tail”, the so‐called “radiation”, appears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.