Abstract
A linearized quasi-compact finite difference scheme is proposed for semilinear space-fractional diffusion equations with a fixed time delay. The nonlinear source term is discretized and linearized by Taylor’s expansion to obtain a second-order discretization in time. The space-fractional derivatives are approximated by a weighted shifted Grünwald–Letnikov formula, which is of fourth order approximation under some smoothness assumptions of the exact solution. Under the local Lipschitz conditions, the solvability and convergence of the scheme are proved in the discrete maximum norm by the energy method. Numerical examples verify the theoretical predictions and illustrate the validity of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.