Abstract

A finite-difference scheme is proposed for the one-dimensional time-dependent Schrödinger equation. We introduce an artificial boundary condition to reduce the original problem into an initial-boundary value problem in a finite-computational domain, and then construct a finite-difference scheme by the method of reduction of order to solve this reduced problem. This scheme has been proved to be uniquely solvable, unconditionally stable, and convergent. Some numerical examples are given to show the effectiveness of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.