Abstract

A finite-difference method is developed for solving two coupled, ordinary differential equations that model a sequence of chemical reactions. The initial-value problem is highly nonlinear and involves three parameters. Various types of theoretical solution of this problem (the Sal’nikov thermokinetic oscillator problem) may be found, depending on these parameters; this is because the stationary point is surrounded by up to two limit cycles. The well-known, first-order, explicit Euler method and an implicit finite difference method of the same order are used to compute the solution. It is shown that this implicit method may, in fact, be used explicitly and extensive numerical experiments are made to confirm the superior stability properties of the alternative method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.