Abstract

This paper provides a finite-difference discretization for the one- and two-dimensional tempered fractional Laplacian and solves the tempered fractional Poisson equation with homogeneous Dirichlet boundary conditions. The main ideas are to, respectively, use linear and quadratic interpolations to approximate the singularity and non-singularity of the one-dimensional tempered fractional Laplacian and bilinear and biquadratic interpolations to the two-dimensional tempered fractional Laplacian. Then, we give the truncation errors and prove the convergence. Numerical experiments verify the convergence rates of the order $$O(h^{2-2s})$$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.