Abstract
This paper considers a finite dam with independently and identically distributed (i.i.d.) inputs occurring in a Poisson process; the special cases where the inputs are (i) deterministic and (ii) negative exponentially distributed are considered in detail. The instantaneous release trate is proportional to the content, i.e., there is an exponential fall in conten except when inputs occur. This model may arise in several other situations such as a geiger counter or integrated shot noise. The distribution of the number of inputs, and of the time, to first overflowing is obtained in terms of generating functions; in Case (i) the solution is obtained through recurrence relations involving iterated integrals which can be evaluated numerically, and in Case (ii) using a series solution of a second order differential equation. Numerical results, in particular for the first two moments, are obtained for various values of the parameters of the model, and compared with a large number of simulations. Some remarks are also made about the infinite dam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.