Abstract

We consider a finite-capacity single-server queue in which arrivals occur one at a time, according to a renewal process. The successive service times are mutually independent and have a common phase-type distribution. The customers are served in groups of size at least L, a preassigned threshold value. Explicit analytic expressions for the steady-state queue-length densities at arrivals and at arbitrary time points, and the throughput of the system are obtained. The Laplace-Stieltjes transform of the stationary waiting-time distribution of an admitted customer at points of arrivals is computed. It is shown to be of phase type when the arrival process is also of phase type. Efficient algorithmic procedures for the steady-state analysis of the model are presented. These procedures are used in arriving at an optimal value for L that minimizes the mean waiting time of an admitted customer. A conjecture on the nature of the mean waiting time is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.