Abstract
We propose a conceptual (generic) allometric (power function) relationship between tree-size-related forest inventory attributes (e.g. biomass, volume, basal area, quadratic mean diameter, Lorey's height) and canopy height (CH) as estimated from first-return airborne light detection and ranging (LiDAR) pulses. A data-driven estimation of the parameters in the power function is complicated, so we recommend an alternative approximation obtained via a linearisation step. Only two predictors appear in the approximation: the mean CH and the variance of CHs within the spatial domain supported by field data. The proposed model eliminates an otherwise complex search for the best predictors amongst a large number of candidate LiDAR metrics. It also facilitates model comparisons and interpretation. Fit statistics estimated for volume, basal area, quadratic mean diameter and Lorey's height – using three separate datasets from Norway – were compelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.