Abstract

In system-on-chips (SoCs), DMA, as a peripheral module, plays an important role in data transmission. However, the structure shrinking of SoC leads to its proneness to radiation-induced soft errors, especially for DMA. This paper presents a fine-grained software-implemented fault tolerance for SoC, named DCRH, to enhance the reliability of DMA against soft errors. DCRH achieves fine-grained selective fault tolerance, protecting DMA without interfering other modules of SoC. Furthermore, it is transparent to the user application because it performs on driver layer. In this paper, we present our fault source analysis for DMA based on Xilinx Zynq-7010 SoC and the detailed design of DCRH. The method is then applied to bare-metal MicroZed so that a DCRH-enhanced DMA driver is developed. Finally, SSIFFI is engaged in the simulated DMA fault injection experiments to validate DCRH. The experimental results prove that DCRH can achieve high fault coverage for DMA, above 97%, with stable performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call