Abstract

Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potential of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an in-plant Box-Behnken test program of the Floatex hydrosizer has been conducted at Kerr-McGee`s Galatia preparation plant. The results have shown that the Floatex hydrosizer can be successfully used to reject most of coarser ({plus}100 mesh) pyrite and mineral matter in the coal stream to the plant. With a single operation, ash rejection of 63% and total sulfur rejection of 43% have been achievedmore » while maintaining a combustible recovery as high as 90.5%. A long term duration test under the optimum operating conditions determined from Box-Behnken test results has also been conducted. The feed samples for the following enhanced gravity - column flotation studies, which will be carried out in the next reporting period, have been collected.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call