Abstract
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new heuristic algorithm for the JSSP that effectively combines the classical shifting bottleneck procedure (SBP) with a dynamic and adaptive neighborhood search procedure. Our new search method, based on a filter-and-fan (F&F) procedure, uses the SBP as a subroutine to generate a starting solution and to enhance the best schedules produced. The F&F approach is a local search procedure that generates compound moves by a strategically abbreviated form of tree search. Computational results carried out on a standard set of 43 benchmark problems show that our F&F algorithm performs more robustly and effectively than a number of leading metaheuristic algorithms and rivals the best of these algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.