Abstract
Introduction Secondhand smoke endangers both the environment and the health of nonsmokers. Due to the scarcity of repeatable data generated by human subjects, a system capable of generating representative secondhand smoke is essential for studying smoke properties. This work presents the design and validation of a filter-based system that could mimic the particle deposition and penetration in human respiratory system for secondhand smoke generation and characterization. Methods Guided by our study on characterizing size-dependent filtration efficiency of common materials, we identified three filter media that generate similar particle deposition efficiencies compared to different regions of the human respiratory system over a wide submicron size range. We demonstrated the performance of the proposed filter-based system using various operating conditions. Additionally, we compared the properties of secondhand smoke particles to those of primary smoke particles. Results The difference in aerosol deposition efficiencies between the filter-based system and the International Commission on Radiological Protection (ICRP) model was less than 10% in the size range of 30 to 500 nm. High concentrations of metals were detected in the secondhand smoke. The contents of Ni and Cr generated from the secondhand electronic cigarettes are at least 20 and 5 times above the regulated daily maximum intake amount. Conclusion Given the agreement in aerosol respiratory deposition between the filter-based system and the ICRP model, such a system can facilitate laboratory studies of secondhand smoke due to its simple structure, high repeatability, and ease of control while remaining free of human subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.