Abstract

A tracer experiment was conducted at the commercial low‐level nuclear waste disposal site near Barnwell, South Carolina, to test a new method for determining the tortuosity and sorption‐affected porosity for gaseous diffusion transport of materials in the Unsaturated zone. Two tracers, CBrClF2 and SF6, were released at constant rates of 105 and 3.3 ng/s, respectively, from permeation devices, which were placed in short screened sections in access holes. Soil gas was sampled from 15 piezometers located at various distances from the sources by sequentially pumping 60–160 mL of gas from the piezometers into a dual‐column gas chromatograph located at the test site. The CBrClF2 concentration data obtained from several of the piezometers were analyzed by use of type curves for a continuous point source in an areally extensive medium bounded above and below by planar no‐flow boundaries. The tortuosity of the geologic unit tested, an eolian sand, was determined to be about 0.4, and the sorption‐affected porosity to be 0.22. The tortuosity value is plausible, but the sorption‐affected porosity value is substantially less than that computed from the drained porosity, particularly if adjustments are made for retardation due to solution of the tracer in the liquid phase and sorption on the solid phase. The SF6 data could not be reliably analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.