Abstract
We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound that applies to models of inflation coupled to Einstein gravity.Our strongest bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models.This shows that non-trivial dynamics of the inflaton can't evade the Lyth bound. We also present a weaker, but more universal bound that holds when the Null Energy Condition (NEC) is satisfied at horizon crossing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.