Abstract

The large shape variability and partial occlusions challenge most object detection and tracking methods for nonrigid targets such as pedestrians. This paper presents a new approach based on a two-layer statistical field model that characterizes the prior of the complex shape variations as a Boltzmann distribution and embeds this prior and the complex image likelihood into a Markov field. A probabilistic variational analysis of this model reveals a set of fixed-point equations characterizing the equilibrium of the field. It leads to computationally efficient methods for calculating the image likelihood and for training the model. Based on that, effective algorithms for detecting nonrigid objects are developed. This new approach has several advantages. First, it is intrinsically suitable for capturing local nonrigidity. In addition, due to the distributed likelihood, this approach is robust to partial occlusions. Moreover, the two-layer structure provides large flexibility of modeling the image observations, which makes the new method robust to clutters. Extensive experiments demonstrate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.