Abstract
Across a broad set of applications, system outcomes may be summarized as probabilities in confusion or contingency tables. In settings with more than two outcomes (e.g., stages of cancer), these outcomes represent multinomial experiments. Measures to summarize system performance have been presented as linear combinations of the resulting multinomial probabilities. Statistical inference on the linear combination of multinomial probabilities has been focused on large-sample and parametric settings and not small-sample settings. Such inference is valuable, however, especially in settings such as those resulting from pilot or low-cost studies. To address this gap, we leverage the fiducial approach to derive confidence intervals around the linear combination of multinomial parameters with desirable frequentist properties. One of the original arguments against the fiducial approach was its inability to extend to multiparameter settings. Therefore, the great novelty of this work is both the derived interval and the logical framework for applying the fiducial approach in multiparameter settings. Through simulation, we demonstrate that the proposed method maintains a minimum coverage of , unlike the bootstrap and large-sample methods, at comparable interval lengths. Finally, we illustrate its use in a medical problem of selecting classifiers for diagnosing chronic allograph nephropathy in postkidney transplantpatients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.