Abstract

The transport of the antineoplastic drug doxorubicin (Adriamycin) in human red blood cells was investigated by measuring the net efflux from loaded cells. Previous data indicated that doxorubicin transport was a Fickian diffusion transport process of the electrically neutral molecule through the lipid domain of the cell membrane (Dalmark, 1981 [In press]). However, doxorubicin transport showed saturation kinetics and a concentration-dependent temperature dependence with nonlinear Arrhenius plots. The two phenomena were related to the doxorubicin partition coefficient between 1-octanol and a water phase. This relationship indicated that the two phenomena were caused by changes in the physiochemical properties of doxorubicin in the aqueous phase and were not caused by interaction of doxorubicin with cell membrane components. The physicochemical properties of doxorubicin varied with concentration and temperature because of the ability of doxorubicin to form polymers by self-association in aqueous solution like other planar aromatic molecules through pi-electron orbital interaction. The hypothesis is proposed that doxorubicin transport across cell membranes takes place by simple Fickian diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.