Abstract
AbstractDegradable polymer nanofibers produced by electrospinning are attractive for use in cell culture and tissue repair. However, the hydrophobicity and initial poor cell adhesion of synthetic polymers have limited their use in tissue regeneration. Herein, the surface of a poly(lactide‐co‐caprolactone) Arg‐Gly‐Asp sequence of nanofiber was tailored with a fibronectin peptide (FN10), which was designed to retain the central cell‐binding domain. The electrospun nanofibers are first treated with an alkaline solution to reveal the carboxyl groups on the surface, which is followed by coupling with an FN10 solution in conjunction with a carbodiimide‐based agent. Peptide coupling occurs effectively with saturation within 1 h, and the coupled peptide maintains its stability for several days. The peptide‐coupled nanofibers show significant improvements in initial cell adhesion and spreading compared with the untreated one, confirming the role of the FN10 peptide in the initial cell events. This methodology may be useful in tailoring the surface of polymeric nanofibers with biomolecules targeted for specific tissue responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.