Abstract

Steel–concrete composite shear wall offers a favourable lateral strength and deformation ductility for seismic applications while significantly shortening the project schedule through eliminating the use of formworks and taking advantage of modular construction methodology. This paper presents a fibre-based modelling technique for simulation of the cyclic nonlinear response of composite walls by taking advantage of existing reinforced concrete and steel plate shear wall models. The improved modelling technique for cyclic analysis of composite walls that benefits from the macro models available for steel and concrete shear walls is introduced. The model is validated using experimental test data from 20 wall specimens. A sensitivity analysis is performed to examine the influence of various geometrical and material properties using the proposed modelling technique. A step-by-step modelling recommendation is finally proposed. The results show that the proposed modelling technique can efficiently be used to reproduce the nonlinear cyclic response of composite walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call