Abstract

Decellularized vascular graft has potential in clinical application, such as coronary artery bypass surgery, peripheral artery bypass surgery or microsurgery. An ideal decellularization protocol requires balance in cell removal efficiency and extracellular matrix preserving. Both biochemical and biomechanical properties are crucial to the success of scaffold in cell seeding and animal study. A comprehensive understanding of the composition, microstructure, and mechanical behavior of the arterial wall is the key to the development of decellularized vascular grafts. For this purpose, we proposed this "Fiber-Progressive-Engagement" model to evaluate the microstructure, composition and mechanical properties of porcine coronary artery. The model provides a new perspective regarding the non-linear behavior of arterial tissue and its decellularized derivatives. It can be widely applied to different types of tissues, as demonstrated in the aorta and coronary artery. This model has several advantages; it provides an improved fit of non-linear curves (R2>0.99), can be used to elucidate the pseudoelastic properties of porcine vascular tissues using the concept of fiber engagement, and can estimate an elastic modulus with greater accuracy (compared to the graphical estimation or calculation by simple linear fittings), as well as to plot typical stress-strain curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call