Abstract
The problem of obtaining vibratory information from remote, rotating, components within a machine has been overcome by means of a laser-Doppler fiber-optic probe. Laser light is transmitted down the fiber-optic and scattered light is returned for analysis in the same way. The Twyman-Green mode of operation of the laser-Doppler system has been shown to have serious shortcomings for this type of work and a new mode has been produced, and used successfully, in conjunction with Bragg cells for frequency shifting. The use of a single set of Bragg cells to compensate for the average velocity of a rotating system, limits the allowable speed of rotation to about 1000 rpm. However, other techniques for frequency shifting are available. An experimental investigation is reported in which a rotating system, consisting of a disk carrying flat cantilever blades, was rotated at about 1000 rpm while one of the blades was excited at 163 Hz. The measured frequency of the vibrating blade was 162.8 Hz and similar accuracy was obtained for the amplitude measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.