Abstract

We have prepared a novel fiber-optic evanescent wave sensor (FEWS) for dissolved oxygen (DO) detection. The sensor fabrication was based on coating a decladded portion of an optical fiber with a microporous coating, which was prepared from 3,3,3-trifluoropropyltrimethoxysilane and n-propyltrimethoxysilane. The fluorophores were immobilized in the porous coating and excited by the evanescent wave field produced on the core surface of the optical fiber. The sensitivity of the sensor was quantified by the ratio of the fluorescence intensities in pure deoxygenated (I (0)) and in pure oxygenated environments (I). Results show that the quenching response of DO is increased with the enhancement of the coating surface hydrophobicity using the presented hybrid fluorinated ORMOSILs. The calibration curve of I (0)/I to [O(2)] is linear from 0 to 40 ppm and the detection limit is 0.05 ppm (3sigma) with a short response time of 15 s for DO detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.