Abstract

We propose a fiber optic single-unit but dual-mode optical imaging system that can provide fast cross-sectional imaging capabilities of swept-source optical coherence tomography (SS-OCT) and functional capabilities of fluorescence spectroscopy (FS). By adopting a fiber optic FS system into a fiber-based SS-OCT system, a compact and effective multimodal single-unit SSOCT-FS system is achieved. Here, the key element of the proposed multimodal imaging system is a specially designed fiber coupler based on double-clad fiber (DCF), which has only cladding-mode coupling capability. The DCF couplers are fabricated with home-drawn DCF by several fabrication methods; a twisting method, a side-polishing method and a fused biconical tapered (FBT) method. Experimentally, the FBT method provides rather flat cladding mode coupling efficiency over 40% in a wide wavelength range. With this specially designed DCF coupler, the OCT signal and the fluorescence signal is measured independently but with a single-unit system. The performance of the SSOCT-FS system is confirmed by measuring the cross-sectional image and the fluorescence signal of a photosensitizer chlorin e6 injected in-vivo rat tumor model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.