Abstract

AbstractA technique to cut out small pieces of samples directly from chips or wafer samples in a focused ion beam (FIB) system has been developed. A deep trench is FIB milled to cut out a small, wedge-shaped portion of the sample from the area of interest A micromanipulator with tungsten (W) probe is employed for lifting the micro-sample. The lifted micro-sample is then mounted on a carrier to prepare electron transparent thin foil specimens for transmission electron microscope (TEM) observation. We have also developed a method for site-specific TEM specimen preparation. In this method, FIB system and TEM/scanning transmission electron microscope (STEM) equipped with secondary electron (SE) detector are employed. An FIB–TEM/STEM compatible specimen holder has also been developed so that a specimen can be milled in the FIB system and observed in a TEM/STEM without remounting the specimen. STEM and scanning electron microscopy (SEM) images are used for locating a specific site on a specimen. SEM image observation at an accelerating voltage of 200kV enabled us to observe not only surface structures but also inner structures near the surface of a cross section with depth of field of around 1 micrometer. The STEM image allows the observation of inner structures of 3-5 micrometer thick specimens. Milling of a specimen by FIB and observation of the milled sample by SEM and STEM are alternately carried out until an electron transparent thin foil specimen is obtained. The position accuracy of the method in TEM specimen preparation is approximately 100nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call