Abstract
In this paper we prove a Feynman–Kac–Ito formula for magnetic Schrodinger operators on arbitrary weighted graphs. To do so, we have to provide a natural and general framework both on the operator theoretic and the probabilistic side of the equation. On the operator side we identify a very general class of potentials that allows the definition of magnetic Schrodinger operators. On the probabilistic side, we introduce an appropriate notion of stochastic line integrals with respect to magnetic potentials. Apart from linking the world of discrete magnetic operators with the probabilistic world through the Feynman–Kac–Ito formula, the insights from this paper gained on both sides should be of an independent interest. As applications of the Feynman–Kac–Ito formula, we prove a Kato inequality, a Golden–Thompson inequality and an explicit representation of the quadratic form domains corresponding to a large class of potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.