Abstract

The 2D-Raman-THz response in all possible time-orderings (Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman) of amorphous water ice is calculated in two ways: from atomistic molecular dynamics simulations and with the help of a Feynman diagram model, the latter of which power-expands the potential energy surface and the dipole and polarizability surfaces up to leading order. Comparing both results allows one to dissect the 2D-Raman-THz response into contributions from mechanical anharmonicity, as well as electrical dipole and polarizability anharmonicities. Mechanical anharmonicity dominates the 2D-Raman-THz response of the hydrogen-bond stretching and hydrogen-bond bending bands of water, and dipole anharmonicity dominates that of the librational band, while the contribution of polarizability anharmonicity is comparably weak. A distinct echo of the hydrogen-bond stretching band is observed for the THz-Raman-THz pulse sequence, again dominated by mechanical anharmonicity. A peculiar mechanism is discussed, which is based on the coupling between the many normal modes within the hydrogen-bond stretching band and which will inevitably generate such an echo for an amorphous structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call