Abstract
Link prediction aims to predict the missing facts in knowledge graphs. Most previous work focuses on the transductive link prediction, which cannot predict unknown entities. However, knowledge graphs are evolving in practical scenarios and new entities are constantly added. A graph neural network based on subgraph structure can effectively make predictions on a knowledge graph composed of unknown entities. Based on this method, we propose a new inductive link prediction model MILP, which uses meta-learning to predict unseen entities on few-shot data. Specifically, MILP divides the training data into four tasks according to the relation types and constructs a subgraph structure of each triplet, and then trains each task sequentially through the meta-learning framework which uses graph neural network to score the triplets. Experiments are carried out on the benchmark inductive link prediction datasets, and the results show that in most cases the proposed model achieves better results than the baseline models, proving the effectiveness of MILP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.