Abstract

The usefulness of the simulation of the energy level schemes of the trivalent rare earth ( R 3+) ions in the prediction of the properties of the rare earth compounds is demonstrated for a few selected cases emphasizing the connection between different spectroscopic and magnetic properties of the R 3+ ions. The importance of the calculated energy level schemes in the UV-VUV range in interpreting complicated spectra and designing new phosphors by energy transfer and quantum cutting is described. In the absence of direct measurements, the calculated energy level values can be very useful. The possibilities to interpret the magnetic properties of the R 3+ (and R 2+) ions are described by using the wave functions of the energy levels obtained from the energy level simulations. As a fine example, it is shown how the amount of an Eu 2+ impurity can be obtained from the calculation of the paramagnetic susceptibility as a function of temperature. The problems involved in the simulation of the 7 F J crystal field energy level scheme of the Eu 3+ ion are highlighted by using a comparison between the extensive literature data and calculated level schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.