Abstract
One is reminded in this paper of the often overlooked fact that the geometric straight line, or GSL, of Euclidean geometry is not necessarily identical with its usual Cartesian coordinatisation given by the real numbers in R. Indeed, the GSL is an abstract idea, while the Cartesian, or for that matter, any other specific coordinatisation of it is but a mathematical model chosen upon certain reasons. And as is known, there are a a variety of mathematical models of GSL, among them given by nonstandard analysis, reduced power algebras, the topological long line, or the surreal numbers. As shown in this paper, the GSL can allow coordinatisations which are arbitrarily more rich locally and also more large globally, being given by corresponding linearly ordered sets of no matter how large cardinal. Thus one can obtain in relatively simple ways structures which are more rich locally and large globally than in nonstandard analysis, or in various reduced power algebras. Furthermore, vector space structures can be defined in such coordinatisations. This fact can have a major importance in physics, since such locally more rich and globally more large coordinatisations of the GSL do allow new physical insights, just as the introduction of various microscopes and telescopes have done. Among others, it can reassess special relativity with respect to its independence of the mathematical models used for the GSL. Also, it can allow the more appropriate modelling of certain physical phenomena. One of the long vexing issue of so called “infinities in physics” can obtain a clarifying reconsideration. It indeed all comes down to looking at the GSL with suitably constructed microscopes and telescopes, and apply the resulted new modelling possibilities in theoretical physics. One may as well consider that in string theory, for instance, where several dimensions are supposed to be compact to the extent of not being observable on classical scales, their mathematical modelling may benefit from the presence of infinitesimals in the mathematical models of the GSL presented here. However, beyond all such particular considerations, and not unlikely also above them, is the following one: theories of physics should be not only background independent, but quite likely, should also be independent of the specific mathematical models used when representing geometry, numbers, and in particular, the GSL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.