Abstract
Conventional LIDAR systems require hundreds or thousands of photon detections to form accurate depth and reflectivity images. Recent photon-efficient computational imaging methods are remarkably effective with only 1.0 to 3.0 detected photons per pixel, but they are not demonstrated at signal-to-background ratio (SBR) below 1.0 because their imaging accuracies degrade significantly in the presence of high background noise. We introduce a new approach to depth and reflectivity estimation that focuses on unmixing contributions from signal and noise sources. At each pixel in an image, short-duration range gates are adaptively determined and applied to remove detections likely to be due to noise. For pixels with too few detections to perform this censoring accurately, we borrow data from neighboring pixels to improve depth estimates, where the neighborhood formation is also adaptive to scene content. Algorithm performance is demonstrated on experimental data at varying levels of noise. Results show improved performance of both reflectivity and depth estimates over state-of-the-art methods, especially at low signal-to-background ratios. In particular, accurate imaging is demonstrated with SBR as low as 0.04. This validation of a photon-efficient, noise-tolerant method demonstrates the viability of rapid, long-range, and low-power LIDAR imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.