Abstract
In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is asserted, d — incoming data is denied, and u — incoming data is neither asserted nor denied, that corresponds to the answer “don’t know”. In so doing, the power-set of 3, that is the set 8 is considered. It turns out that there are not three but four orderings naturally defined on the set 8 that form the tetralattice EIGHT4. Besides three ordering relations mentioned above it is an extra uncertainty ordering. Quite predictably, the logics generated by a–order (truth order) and d–order (falsity order) coincide with first-degree entailment. Finally logic with two kinds of operations (a–connectives and d–connectives) and consequence relation defined via a–ordering is considered. An adequate axiomatization for this logic is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.