Abstract
In organicelectronics the functionalization of dielectric substrates with self-assembled monolayers is regarded as an effective surface modification strategy that may significantly improve the resulting device performance. However, this technique is not suitable for polymer substrates typically used in flexible electronics. Here, we report organic modifiers based on a paraffinic tripodal triptycene, which self-assembles into a completely oriented two-dimensional hexagonal triptycene array and one-dimensional layer stacking structure on polymer surfaces. Such few-layer films are analogous to conventional self-assembled monolayers on inorganic substrates in that they neutralize the polymer surface. Furthermore, the triptycene films significantly improve the crystallinity of an organic semiconductor and the overall performance of organic thin-film transistors, therefore enabling the fabrication of high-performance organic complementary circuits on polymer substrates with high oscillation speeds and low operation voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.