Abstract

AbstractThere have been great efforts on the development of higher-order numerical schemes for compressible Euler equations in recent decades. The traditional test cases proposed thirty years ago mostly target on the strong shock interactions, which may not be adequate enough for evaluating the performance of current higher-order schemes. In order to set up a higher standard for the development of new algorithms, in this paper we present a few benchmark cases with severe and complicated wave structures and interactions, which can be used to clearly distinguish different kinds of higher-order schemes. All tests are selected so that the numerical settings are very simple and any higher order scheme can be straightforwardly applied to these cases. The examples include highly oscillatory solutions and the large density ratio problem in one dimensional case. In two dimensions, the cases include hurricane-like solutions; interactions of planar contact discontinuities with asymptotic large Mach number (the composite of entropy wave and vortex sheets); interaction of planar rarefaction waves with transition from continuous flows to the presence of shocks; and other types of interactions of two-dimensional planar waves. To get good performance on all these cases may push algorithm developer to seek for new methodology in the design of higher-order schemes, and improve the robustness and accuracy of higher-order schemes to a new level of standard. In order to give reference solutions, the fourth-order gas-kinetic scheme (GKS) will be used to all these benchmark cases, even though the GKS solutions may not be very accurate in some cases. The main purpose of this paper is to recommend other CFD researchers to try these cases as well, and promote further development of higher-order schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.