Abstract
Fetal electrocardiogram (FECG) extraction is very important procedure for fetal health assessment. In this article, we propose a fast one-unit independent component analysis with reference (ICA-R) that is suitable to extract the FECG. Most previous ICA-R algorithms only focused on how to optimize the cost function of the ICA-R and payed little attention to the improvement of cost function. They did not fully take advantage of the prior information about the desired signal to improve the ICA-R. In this paper, we first use the kurtosis information of the desired FECG signal to simplify the non-Gaussian measurement function and then construct a new cost function by directly using a nonquadratic function of the extracted signal to measure its non-Gaussianity. The new cost function does not involve the computation of the difference between the function of the Gaussian random vector and that of the extracted signal, which is time consuming. Centering and whitening are also used to preprocess the observed signal to further reduce the computation complexity. While the proposed method has the same error performance as other improved one-unit ICA-R methods, it actually has lower computation complexity than those other methods. Simulations are performed separately on artificial and real-world electrocardiogram signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.