Abstract

A spontaneously derived fertile plant was recovered from a petaloid cytoplasmic male-sterile (CMS) carrot inbred line. Genetic analysis indicated a single nuclear gene was responsible for the restoration to fertility. Within a family segregating for the nuclear restorer in combination with the sterility-inducing cytoplasm, fertile plants were recovered that could not restore fertility when crossed to sterile genotypes. Genetic analysis indicated cytoplasmic reversion for fertility, and Southern analysis, comparing mtDNA organization of the fertile revertant and its CMS progenitor, identified mitochondrial genome rearrangements. Hybridization of cosmids representing a 108-kb subgenomic circle of the sterile line to DNA of a fertile maintainer and fertile revertant lines indicated a similar mtDNA organization for these genotypes that was distinct from that of the sterile line. Six restriction fragments totalling 43.2 kb were common to the fertile maintainer and revertant and absent in the sterile; other restriction fragments totalling 38.2 kb were present only for the sterile line. Unique fragments of low stoichiometry, two for the fertile maintainer and three for the revertant, distinguished these lines. The reversion to fertility in the sterile line could have resulted from the amplification of a mitochondrial submolar genome highly homologous to that found in the fertile maintainer line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.