Abstract

Dense analog synaptic crossbar arrays are a promising candidate for neuromorphic hardware accelerators due to the ability to mitigate data movement by performing in-situ vector-matrix products and weight updates within the storage array itself. However, many analog weight storage cells suffer from long latencies or low dynamic ranges, limiting the achievable performance. In this work, we demonstrate that the voltage-controlled partial polarization switching dynamics in ferroelectric-field-effect transistors (FeFET) can be harnessed to enable a 32 state non-volatile analog synaptic weight cell with large dynamic range (67×) and low latency weight updates (50 ns) for an amplitude modulated pulse scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.