Abstract

A pair of 9-arylidene-9H-fluorene and benzothiadiazole based, low-bandgap copolymers differing merely in the para or meta substitution of alkoxy groups to the arylidene linkages, i.e. p-PAFDTBT and m-PAFDTBT respectively, were comparatively investigated by using morphological characterization, ultrafast spectroscopy and quantum chemical calculations. Despite the subtle difference in the alkoxy substitution patterns, p-PAFDTBT molecules in photoactive films were shown to have a higher degree of crystallinity owing to the relatively less rotational torsion of the arylidene linkages. As a result, in either neat or fullerene-blended films, p-PAFDTBT compared to m-PAFDTBT gave rise to a substantially higher charge yield and much slower charge recombination. This work demonstrates that the alkoxy substitution pattern and the arylidene linkage are highly influencing on the morphology of the photoactive layers and thereby on the photovoltaic performance of the semiconducting copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.