Abstract

Electroporation has a specific application in the delivery of drugs into the cells. In addition, the challenge is to be able to deliver the drugs effectively. The key to the electroporation-based delivery method is regulated induced transmembrane voltage (ITMV). Recently, with the advent of COVID-19, there has been an increase in clinical trials on the delivery of DNA plasmids by electroporation. As a result, the substantial number of laboratory experiments are not feasible, thereby increasing the dependency on simulation-based research. Simulations of delivery of extracellular material into the cell depend upon molecular transport modeling in an electroporated cell. In this paper, molecular transport through a single nanopore is being studied theoretically. The closed-form expression of molecular transport is used in COMSOL Multiphysics simulation to obtain extracellular concentration variation as a function of time. Sinusoidal pulses with the varying magnitude of electric field (8kV/cm and 10 kV/cm) and time duration were used to understand pulse parameters' effect on molecular transport. The simulation results match the empirical result from the literature hence validate the simulation study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.