Abstract

A method to design gratings in integrated photonics, is presented. The method is based on a transfer matrix formalism enhanced by Finite Element Method (FEM) parameter calculations. The main advantages of the proposed technique are the easy of use, the fast optimization time and the versatility of the approach. Few examples of optimized gratings to obtain various scattered light field profiles for different applications are presented: a double-Gaussian profile, a flat top square profile, a spot profile on a chip surface, profiles suited to get efficient and selective coupling to single mode and multimode fibers. A discussion of the limits of the method and some insights on how to improve it are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.