Abstract

Crystals are known to affect bubble behavior in natural and industrial melts. In volcanology, high crystal contents (ϕc > 30 vol.%) may drastically increase the suspension viscosity, altering bubble dynamics severely enough to modify eruptive style. During industrial glass production, crystals can affect the process and the final product. In this work, we investigate how a small crystallinity of nano-sized RuO2 (ϕc ∼ 2 vol.%) modifies bubble behavior in a melt, generating a cyclic gas-release phenomenon. We conduct a series of experiments on a three-phase system composed of a borosilicate melt, bubbles, and RuO2 crystals. Optical microscopic investigation is performed on the products of thermal treatment at 1000°C for different durations. Based on viscosity measurements, contact angle measurements, and numerical simulations, we propose a mechanism of entrainment of bubbles carrying crystals to the upper surface accompanied by crystal aggregation, and followed by an increase in viscosity to explain the observed phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.