Abstract

We report the design of a two-degree-of-freedom microelectromechanical systems nanopositioner for on-chip atomic force microscopy (AFM). The device is fabricated using a silicon-on-insulator-based process to function as the scanning stage of a miniaturized AFM. It is a highly resonant system with its lateral resonance frequency at ${\sim}{\rm 850}~{\rm Hz}$ . The incorporated electrostatic actuators achieve a travel range of 16 $\mu{\rm m}$ in each direction. Lateral displacements of the scan table are measured using a pair of electrothermal position sensors. These sensors are used, together with a positive position feedback controller, in a feedback loop, to damp the highly resonant dynamics of the stage. The feedback controlled nanopositioner is used, successfully, to generate high-quality AFM images at scan rates as fast as 100 Hz. $\hfill[2013\hbox{--}0063]$

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.