Abstract

The localization of an acoustic source has attracted much attention in the scientific community, having been applied in several different real-life applications. At the same time, the use of neural networks in the acoustic source localization problem is not common; hence, this work aims to show their potential use for this field of application. As such, the present work proposes a deep feed-forward neural network for solving the acoustic source localization problem based on energy measurements. Several network typologies are trained with ideal noise-free conditions, which simplifies the usual heavy training process where a low mean squared error is obtained. The networks are implemented, simulated, and compared with conventional algorithms, namely, deterministic and metaheuristic methods, and our results indicate improved performance when noise is added to the measurements. Therefore, the current developed scheme opens up a new horizon for energy-based acoustic localization, a field where machine learning algorithms have not been applied in the past.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.