Abstract
The accurate prediction and efficient management of the State of Charge (SoC) of electric vehicle (EV) batteries are critical challenges in the integration of vehicle-to-grid (V2G) systems within multi-energy microgrid (MMO) models. Inaccurate SoC estimation can lead to inefficiencies, increased costs, and potential disruptions in power generation. This paper addresses the problem of optimizing SoC estimation to enhance the reliability and efficiency of V2G scheduling and MMO coordination. In this work, we develop a Feed-Forward Back-Propagation Network (FFBPN) using MATLAB 2024 software, employing the Levenberg–Marquardt algorithm and varying the number of hidden neurons to achieve better performance; performance was measured by the maximum coefficient of determination (R2) and the minimum mean squared error (MSE). Utilizing the NASA Prognostics Center of Excellence (PCoE) dataset, we validate the model’s capability to accurately predict the life cycle of EV batteries. Our proposed FFBPN model demonstrates superior performance compared to existing methods from the literature, offering significant implications for future V2G system developments. The comparison between training, validation, and testing phases underscores the model’s validity and precisely identifies the characteristic curves of FFBPN, showcasing its potential to enhance profitability, efficiency, production, energy savings, and minimize environmental impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.