Abstract

Cardiovascular diseases (CVDs) have been ranked as the leading cause for deaths. The early diagnosis of CVDs is a crucial task in the medical practice. A plethora of efforts were given to the automated auscultation of heart sound, which leverages the power of computer audition to develop a cheap, non-invasive method that can be used at any time and anywhere for measuring the status of the heart. Nevertheless, previous works ignore an important factor, namely, the privacy of the user data. On the one hand, learnt models are always hungry for bigger data. On the other hand, it can be difficult to protect personal private information when collecting such large amount of data. In this dilemma, we propose a federated learning (FL) framework for the heart sound classification task. To the best of our knowledge, this is the first time to introduce FL to this field. We conducted multiple experiments, analysed the impact of data distribution across collaborative institutions on model quality and learning patterns, and verified the feasibility and effectiveness of FL based on real data. Non- independent identically distributed (Non-IID) data and model quality can be effectively improved by adding a strategy of globally sharing data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call