Abstract

We describe an approach and our experiences in applying federated simulation techniques to create large-scale parallel simulations of computer networks. Using the federated approach, the topology and the protocol stack of the simulated network is partitioned into a number of submodels, and a simulation process is instantiated for each one. Runtime infrastructure software provides services for interprocess communication and synchronization (time management). We first describe issues that arise in homogeneous federations where a sequential simulator is federated with itself to realize a parallel implementation. We then describe additional issues that must be addressed in heterogeneous federations composed of different network simulation packages, and describe a dynamic simulation backplane mechanism that facilitates interoperability among different network simulators. Specifically, the dynamic simulation backplane provides a means of addressing key issues that arise in federating different network simulators: differing packet representations, incomplete implementations of network protocol models, and differing levels of detail among the simulation processes. We discuss two different methods for using the backplane for interactions between heterogeneous simulators: the cross-protocol stack method and the split-protocol stack method. Finally, results from an experimental study are presented for both the homogeneous and heterogeneous cases that provide evidence of the scalability of our federated approach on two moderately sized computing clusters. Two different homogeneous implementations are described: Parallel/Distributed ns ( pdns ) and the Georgia Tech Network Simulator ( GTNetS ). Results of a heterogeneous implementation federating ns with GloMoSim are described. This research demonstrates that federated simulations are a viable approach to realizing efficient parallel network simulation tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.