Abstract

Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.