Abstract
AbstractAccurate traffic volume prediction plays a crucial role in urban traffic control by relieving congestion through improved regulation of traffic volume. Network‐level traffic volume prediction and detector failure have rarely been considered in the literature. This paper proposes a framework based on long short‐term memory and the multilayer perceptron that can predict network‐level traffic volumes even with detector failure. A profile model learns the profile of the detector's signature (traffic pattern). Detectors with similar profiles are considered to have similar traffic patterns and are grouped into a cluster. Failed detectors can obtain reference information from similar detectors in the same cluster without additional information. A predictive model is developed for each cluster. The proposed method is validated using Japan Road Traffic Information Center data for three cities. The computational results indicate that the proposed method performs well both on typical days and atypical days (the COVID‐19 lockdown period and the 2021 Tokyo Olympics). Further, it considers detector reliability: the increase in mean absolute error is less than 1 veh/5 min when the probability of detector failure increases to 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.