Abstract

Currently, the continuous change prediction of PM2.5 concentration is an air pollution research hotspot. Combining physical methods and deep learning models to divide the pollution process of PM2.5 into effective multiple types is necessary to achieve a reliable prediction of the PM2.5 value. Therefore, a candlestick chart sample generator was designed to generate the candlestick chart from the online PM2.5 continuous monitoring data of the Guilin monitoring station site. After these generated candlestick charts were analyzed through the Gaussian diffusion model, it was found that the characteristics of the physical transmission process of PM2.5 pollutants can be reflected. Based on a set three-day period, using the time linear convolution method, 2188 sets of candlestick chart data were obtained from the 2013–2018 PM2.5 concentration data. There existed 16 categories generated by unsupervised classification that met the established classification judgment standards. After the statistical analysis, it was found that the accuracy rate of the change trend of these classifications reached 99.68% during the next period. Using the candlestick chart data as the training dataset, the Visual Geometry Group (VGG) model, an improved convolutional neural network model, was used for the classification. The experimental results showed that the overall accuracy (OA) value of the candlestick chart combination classification was 96.19%, and the Kappa coefficient was 0.960. IN the VGG model, the overall accuracy was improved by 1.93%, on average, compared with the support vector machines (SVM), LeNet, and AlexNet models. According to the experimental results, using the VGG classification method to classify continuous pollution data in the form of candlestick charts can more comprehensively retain the characteristics of the physical pollution process and provide a classification basis for accurately predicting PM2.5 values. At the same time, the statistical feasibility of this method has been proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call