Abstract
The amount of multimedia data, such as images and videos, has been increasing rapidly with the development of various imaging devices and the Internet, bringing more stress and challenges to information storage and transmission. The redundancy in images can be reduced to decrease data size via lossy compression, such as the most widely used standard Joint Photographic Experts Group (JPEG). However, the decompressed images generally suffer from various artifacts (e.g., blocking, banding, ringing, and blurring) due to the loss of information, especially at high compression ratios. This article presents a feature-enriched deep convolutional neural network for compression artifacts reduction (FeCarNet, for short). Taking the dense network as the backbone, FeCarNet enriches features to gain valuable information via introducing multi-scale dilated convolutions, along with the efficient 1 ×1 convolution for lowering both parameter complexity and computation cost. Meanwhile, to make full use of different levels of features in FeCarNet, a fusion block that consists of attention-based channel recalibration and dimension reduction is developed for local and global feature fusion. Furthermore, short and long residual connections both in the feature and pixel domains are combined to build a multi-level residual structure, thereby benefiting the network training and performance. In addition, aiming at reducing computation complexity further, pixel-shuffle-based image downsampling and upsampling layers are, respectively, arranged at the head and tail of the FeCarNet, which also enlarges the receptive field of the whole network. Experimental results show the superiority of FeCarNet over state-of-the-art compression artifacts reduction approaches in terms of both restoration capacity and model complexity. The applications of FeCarNet on several computer vision tasks, including image deblurring, edge detection, image segmentation, and object detection, demonstrate the effectiveness of FeCarNet further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.